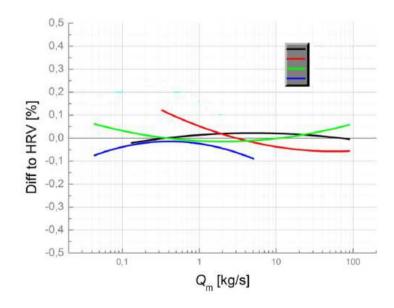


Piston Prover intercomparison within EuReGa

Participants, VSL, PTB and FORCE


Arnthor Gunnarsson, Jos van der Grinten, Mijndert van der Beek and Bodo Mickan

About EuReGa

- European Reference for Gas metering
- Four members of EuReGa
 - PTB, LNE-LADG, VSL and FORCE Technology
- Harmonization every three years
 - Each participant has traceability to primary calibration systems
 - Participants use reference meters to calibrate transfer standards
 - Range 8-50 barA and 25-6500 m³/h
 - Uncertainty in the area of 0.13-0.20%

Introduction to the intercomparison

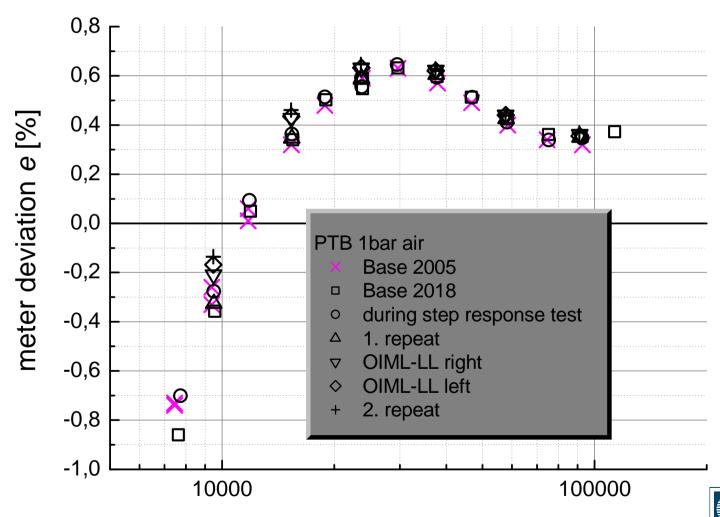
- Intercomparison performed in 2018 and 2019.
- Part of Euramet project 1301, EuReGa-1
- Participants were VSL, PTB and FORCE
 - LNE-LADG did not participate as their primary is a PVTt
 - LNE-LADG and PTB along with NIM and NIST however did a successful intercomparison of primary standards in 2015.
- Low uncertainty reported for all participants

Why this intercomparison?

- Support current CMC claims of the participants
 - Second usage for FORCE, support of a new CMC in the BIPM database
- Further strengthen the European harmonized reference value
- Better understand the difference between the EuReGa members at the lowest possible uncertainty

About the Piston Provers

Institute	VSL	PTB	FORCE
Primary device	24" Gas Oil Piston Prover (GOPP)	10" Piston Prover (HPPP)	26" Twin Piston Prover
Piston	Passive	Passive	Active
Nominal diameter	600 mm	250 mm	660 mm
Absolute operating pressure	1 – 62 bar	8-51 bar	1-66 bar
Piston stroke / effective stroke	12 m / 6.5 m	6 m / 3 m	2.8 m / 0.6-2.7 m
Flowrate range	3 – 230 m³/h	3 – 480 m ³ /h	2 – 400 m ³ /h
Maximum piston speed	0.25 m/s	3 m/s	0.17 m/s
СМС	0.070 - 0.086%	0.065 %	0.080 %

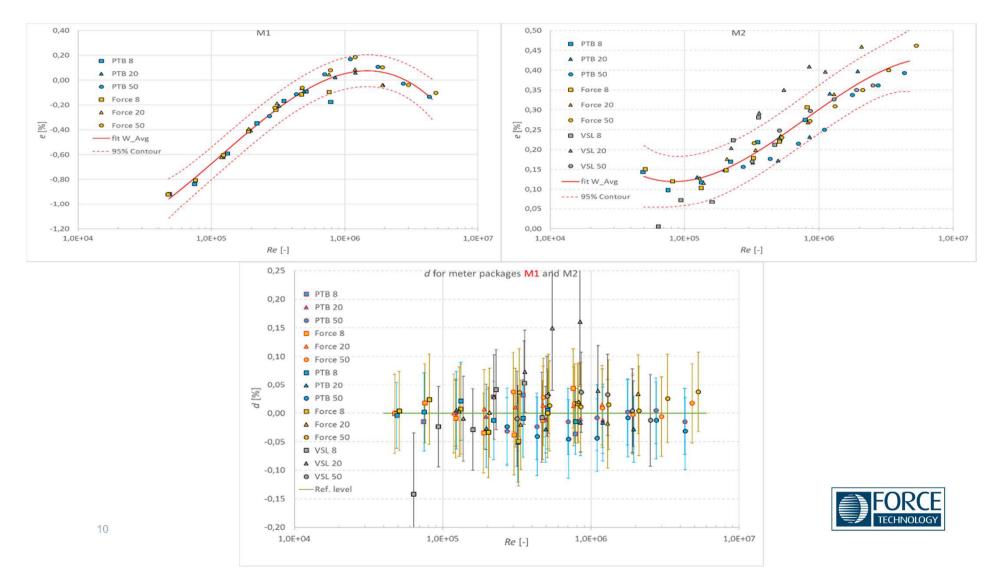


Test Protocol

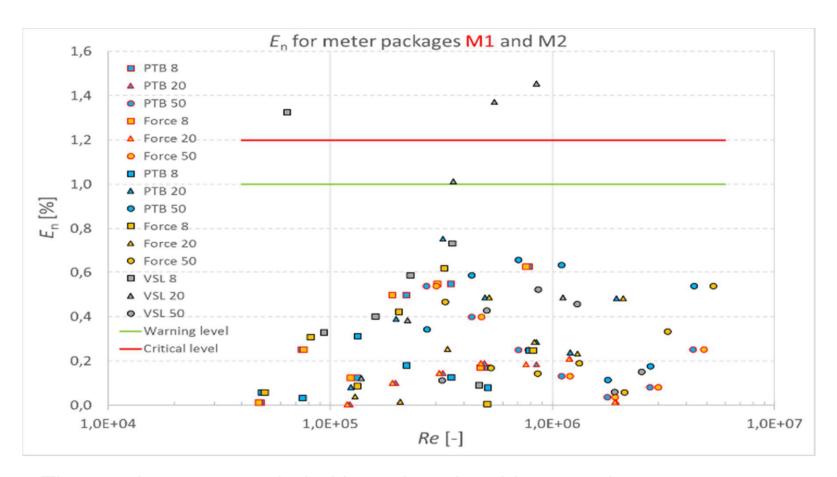
- Two G250 meter packages designated EuReGa DN100 M1 and M2
 - Meters normally used for the EuReGa intercomparison every three years.
 - Fixed upstream flow conditioner, upstream spool, meter, downstream spool with thermowell.
- Flowrates 25, 40, 65, 100, 160, 250 and 400 m³/h
 - VSL calibrate up to their Piston Prover's maximum flow and calibrated only one of the meters, M2
- Pressures 8, 20 and 50 bar absolute pressure with natural gas
- Average error was calculated for each flowrate based on four to five successive measurements.
- Calibration sequence
 - FORCE in March-April 2018
 - PTB in May-June 2018
 - VSL in January 2019

Meter information

Picture of the meter packages

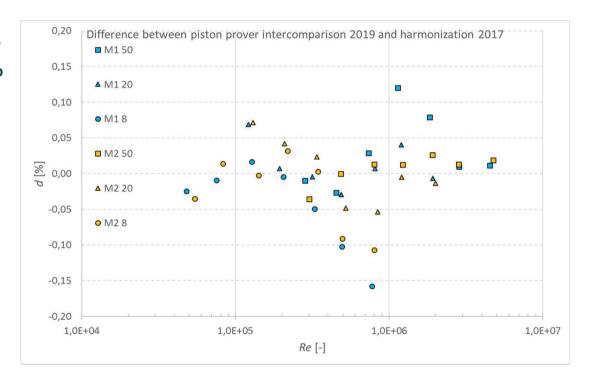


Methodology, Data analysis


- Performed according to Cox, M. G. (2002). The evaluation of key comparison data, Metrologia, Vol. 39, No. 6, 589-595
- A comparison reference value (CRV) weighted average is calculated based on results at the nominal flowrates
- A chi-squared test for consistency used to investigate observed differences
 - Based on this, three datapoints were excluded from calculation of the weighted average
- A deviation d was calculated based on the participants difference to the weighted average
- E_N values were finally calculated based on the deviatons and their uncertainty

Calibration results

Results of the intercomparison



- Three points were excluded based on the chi-squared test
- 96% of En values below 1

Comparison with historic results

- CRV 2019 compared against CRV for the same meters used in 2017
- Average difference: -0.004%
- 50% of |differences|<0.024%

Conclusion

- Results are compliant with 96% of the EN values lower than 1
 - Bilateral intercomparison planned to investigate the few inconsistencies
- Results also match historic results of the meters used in the intercomparison

What can the results be used for

- Tells us that not only are the members of EuReGa equivalent with reference meters, but also at the very start of the traceability lines and very low uncertainty.
- To support our CMC's
 - A new CMC for FORCE is currently in the review process
- Can help us understand where in our traceability lines if anywhere do our results begin to diverge and thus can help us develop our traceability systems
- Strengthens the confidence in the European harmonized reference value

Thank you for your attention.

Questions?

Arnthor Gunnarsson

agu@force.dk

+45 42627637

